Adapting Local Features for Face Detection in Thermal Image
نویسندگان
چکیده
منابع مشابه
Adapting Local Features for Face Detection in Thermal Image
A thermal camera captures the temperature distribution of a scene as a thermal image. In thermal images, facial appearances of different people under different lighting conditions are similar. This is because facial temperature distribution is generally constant and not affected by lighting condition. This similarity in face appearances is advantageous for face detection. To detect faces in the...
متن کاملInvariant Local Features for Face Detection
In the domain of object recognition, the SIFT feature [1] is known to be a very successful local invariant feature. The performance of the recognition task using SIFT features is very robust and also can be done in real-time. This project present an approach that adopt the SIFT feature for the task of face detection. A feature database is created for the detection of generic face features and a...
متن کاملLearning Representative Local Features for Face Detection
This paper describes a face detection approach via learning local features. The key idea is that local features, being manifested by a collection of pixels in a local region, are learnt from the training set instead of arbitrarily defined. The learning procedure consists of two steps. First, a modified version of NMF (Non-negative Matrix Factorization), namely local NMF (LNMF), is applied to ge...
متن کاملFace Spoofing Detection Using Image Distortion Features
Accurate biometric system for authentication is the need of the hour in today’s scenario. In face spoofing attack a person tries to pretend to be a valid user by using photo or video of an authorized person and gets illegitimate access. Hence it is essential to develop a robust and authentic face spoof detection system in order to protect the privacy about the person. Centre of attraction of th...
متن کاملCombining local face image features for identity verification
With an aim of extracting robust facial features under pose variations, this paper presents two directional projections corresponding to extraction of vertical and horizontal local face image features. The matching scores computed from both horizontal and vertical features are subsequently fused at score level via an extreme learning machine that optimizes the total error rate for performance e...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Sensors
سال: 2017
ISSN: 1424-8220
DOI: 10.3390/s17122741